Расчет электрических цепей постоянного тока методом эквивалентных преобразований. Метод преобразования схем Смешанное соединение сопротивлений метод эквивалентных преобразований

Электрическая цепь с последовательным соединением сопротив-лений (рисунок 1.3, а) заменяется при этом цепью с одним эквива-лентным сопротивлением Rэк (рисунок 1.3, б), равным сумме всех сопротивлений цепи:

Rэк = R1 + R2 +…+ Rn = , (1.5)

где R1, R2 … Rn - сопротивления отдельных участков цепи.


Рисунок 1.3 Электрическая цепь с последовательным соединением сопротивлений

При этом ток I в электрической цепи сохраняет неизменным свое значение, все сопротивления обтекаются одним и тем же током. Напряжения (падения напряжения) на сопротивлениях при их последовательном соединении распределяются пропорционально сопротивлениям отдельных участков:

U1/R1 = U2/R2 = … = Un/Rn.

При параллельном соединении сопротивлений все сопро-тивления находятся под одним и тем же напряжением U (рисунок 1.4). Электрическую цепь, состоящую из параллельно соединенных сопротивлений, целесообразно заменить цепью с эквивалентным сопротивлением Rэк, которое опре-деляется из выражения

где - сумма величин, обратных сопротивлениям участков параллель-ных ветвей электрической цепи;

Rj - сопротивление параллельного участка цепи;

n - число параллельных ветвей цепи.

Рисунок 1.4 Электрическая цепь с параллельным соединением сопротивлений

Эквивалентное сопротивление участка цепи, состоящего из одинаковых парал-лельно соединенных сопротивлений, равно Rэк = Rj/n. При параллельном соединении двух сопротивлений R1 и R2 эквивалентное сопротивление определяется как

а токи распределяются обратно пропорционально этим сопротивлениям, при этом

U = R1I1 = R2I2 = … = RnIn.

При смешанном соединении сопротивлений, т.е. при наличии участков электрической цепи с последовательным и параллельным соединением сопротивлений, эквивалентное сопротивление цепи определяется в соответствии с выражением

Во многих случаях оказывается целесообразным также преобразование сопротивлений, соединенных треугольником (рисунок 1.5), эквивалентной звездой (рисунок 1.5).

Рисунок 1.5 Электрическая цепь с соединением сопротивлений треугольником и звездой

При этом сопротивления лучей эквивалентной звезды определяют по формулам:

R1 = ; R2 = ; R3 = ,

где R1, R2, R3 - сопротивления лучей эквивалентной звезды сопротивлений;

R12, R23, R31 - сопротивления сторон эквивалентного треугольни-ка сопротивлений. При замене звезды сопротивлений эквивалентным треугольником сопротивлений, сопротивления его рассчитывают по формулам:

R31 = R3 + R1 + R3R1/R2; R12 = R1 + R2 + R1R2/R3; R23 = R2 + R3 + R2R3/R1.

Метод эквивалентных преобразований заключается в том, что электрическую цепь или ее часть заменяют более простой по структуре электрической цепью. При этом токи и напряжения в непреобразованной части цепи должны оставаться неизменными. В любое последовательное соединение может входить произвольное число сопротивлений (резисторов) и источников ЭДС, а также не более одного источника тока.

Наличие более одного источника тока в соединении исключается вследствие логического противоречия, т.к. в последовательном соединении через все элементы протекает одинаковый ток и этот ток равен току источника. Если же источников тока несколько, то они должны формировать несколько различных токов, что невозможно по характеру их соединения. Присутствие источника в соединении означает лишь то, что ток в этом соединении задан, поэтому без ущерба для общности выводов источник тока можно вынести за пределы соединения и не рассматривать. Тогда в общем случае в соединение будут входитьm сопротивлений и n источников ЭДС (рис а). Не изменяя режима работы соединения, их можно переместить так, чтобы образовались две группы элементов: сопротивления и источники ЭДС (рис. б). Для этой цепи можно написать уравнение Кирхгофа в виде:

U=IR1+IR2+…+IRm+E1+…-En-1+En=I(R1+R2+…Rm)+E1…-En-1+En=IR+E

Таким образом, любое последовательное соединение элементов можно представить последовательным соединением одного сопротивленияR и одного источника ЭДС E Причем, общее сопротивление соединения равно сумме всех сопротивлений

а общая ЭДС – алгебраической сумме

6.Метод узловых потенциалов

Ток в любой ветви схемы можно найти по закону Ома для участка цепи, содержащего ЭДС. Для того чтобы можно было применить закон Ома, необходимо знать потенциалы узлов схемы. Метод расчеты электрических цепей, в котором за неизвестные принимают потенциалы узлов схемы, называют методом узловых потенциалов. Допустим, что в схеме n узлов. Так как любая (одна) точка схемы может быть заземлена без изменения токораспределения в ней, один из узлов схемы можно мысленно зазамлить, т. е.принять потенциал его равным нулю. При этом число неизвестных уменьшается с n до n-1. Число неизвестных в методе узловых потенциалов равно числу уравнений, которые необходимо составить для схемы по первому закону Кирхгофа. В том случае, когда число узлов без единицы меньше числа независимых контуров в схеме, данный метод является более экономным, чем метод контурных токов. Первый закон Кирхгофа: Алгебраическая сумма сил токов для каждого узла в разветвленной цепи равна нулю I1+I2+I3+…+In=0

7.Метод двух узлов

Часто встречаются схемы, содержащие всего два узла. Наиболее рациональным методом расчета токов в них является метод двух узлов. Под методом двух узлов понимают метод расчета электрических цепей, в котором за искомое (с его помощью определяют затем токи ветвей) принимают напряжение между двумя узлами схемы. Схема имеет два узла. Потенциал точки 2 примем равным нулю φ2 = 0. Составим узловое уравнение для узла 1.

φ1(g1+g2+g3)- φ2(g1+g2+g3)=E1g1-E3g3

U12= φ1- φ2= φ1= (E1g1-E3g3)/g1+g2+g3, где

g1=1/R1, g2=1/R2, g3=1/R3 – проводимости ветвей

В общем виде

В знаменателе формулы - сумма проводимостей параллельно включенных ветвей. В числителе - алгебраическая сумма произведений ЭДС источников на проводимости ветвей, в которые эти ЭДС включены. ЭДС в формуле записывается со знаком "плюс", если она направлена к узлу 1, и со знаком "минус", если направлена от узла 1.После вычисления величины потенциала φ1 находим токи в ветвях, используя закон Ома для активной и пассивной ветви.

8 .Метод контурных токов

При расчете методом контурных токов полагают, что в каждом независимом контуре схмы течет свой контурный ток. Уравнения составляют относительно контурных токов, после чего через них определяют токи ветвей. Т. о., метод контурных токов можно определить как метод расчета, в котором за искомые принимают контурные токи. Число неизвестных в этом методе равно числу уравнений, которые необходимо было составить для схемы по второму закону Кирхгофа: алгебраическая сумма произведений сопротивления каждого из участков любого замкнутого контура разветвленной цепи постоянного тока на силу тока на этом участке равна алгебраической сумме ЭДС вдоль этого контура.I1R1+I2R2=E1+E2

Токи в сопротивлениях R1 и R2 равны соответствующим контурным токам. Ток в сопротивлении R3, являющийся общим для обоих контуров, равен разности контурных токов I11 и I22, так как эти токи направлены в ветви с R3 встречно. Выбираются независимые контуры, и задаются произвольные направления контурных токов.В нашем случае эти токи направлены по часовой стрелке. Направление обхода контура совпадает с направлением контурных токов. Уравнения для этих контуров имеют следующий вид: I11(R1+Ri1)+I11R3-I22R3=E1,

I22(Ri2-R2)+I22R3-I11R3=-E2 Перегруппируем слагаемые в уравнениях I11(R1+Ri1+R3)-I22R3=E1=E11, -I11R3+I22(Ri2+R2+R3)=-E2=E22 Суммарное сопротивление данного контура называется собственным сопротивлением контура. Cобственные сопротивления контуров схемы R11=R1+Ri1+R3, R22=Ri2+R2+R3 Сопротивление R3, принадлежащее одновременно двум контурам, называется общим сопротивлением этих контуров. R12=R21=R3 где R12 - общее сопротивление между первым и вторым контурами;R21 - общее сопротивление между вторым и первым контурами.E11 = E1 и E22 = E2 - контурные ЭДС.В общем виде уравнения (4.4) и (4.5) записываются следующим образом I11R11+I22R12=E11, I11R21+I22R22=E22 Собственные сопротивления всегда имеют знак "плюс".

Общее сопротивление имеет знак "минус", если в данном сопротивлении контурные токи направлены встречно друг другу, и знак "плюс", если контурные токи в общем сопротивлении совпадают по направлению. Решая уравнения совместно, находим контурные токи I11 и I22 , затем от контурных токов переходим к токам в ветвях. I1=I11, I2=I22,I3=I11-I22.

9.Метод наложения. Данный метод справедлив только для линейных электрических цепей и является особенно эффективным, когда требуется вычислить токи для различных значений ЭДС и токов источников в то время, как сопротивления схемы остаются неизменными. Данный метод основан на принципе наложения (суперпозиции), который формулируется следующим образом: ток в k – й ветви линейной электрической цепи равен алгебраической сумме токов, вызываемых каждым из источников в отдельности.Аналитически принцип наложения для цепи, содержащей n источников ЭДС и m источников тока, выражается

соотношением:Здесь- комплекс входной проводимости k – й ветви, численно равный отношению тока к ЭДС в этой ветви при равных нулю ЭДС в остальных ветвях;- комплекс взаимной проводимости k – й и i– й ветвей, численно равный отношению тока в k – й ветви и ЭДС в i– й ветви при равных нулю ЭДС в остальных ветвях.Входные и взаимные проводимости можно определить экспериментально или аналитически, используя их указанную смысловую трактовку, при этом, что непосредственно вытекает из свойства взаимности. Аналогично определяются коэффициенты передачи тока, которые в отличие от проводимостей являются величинами безразмерными.

Доказательство принципа наложения можно осуществить на основе метода контурных токов.

Если решить систему уравнений, составленных по методу контурных токов, относительно любого контурного тока, например, то получим(2),где

-определитель системы уравнений, составленный по методу контурных токов;- алгебраическое дополнение определителя.Каждая из ЭДС в (2) представляет собой алгебраическую сумму ЭДС в ветвях i–го контура. Если теперь все контурные ЭДС в (2) заменить алгебраическими суммами ЭДС в соответствующих ветвях, то после группировки слагаемых получится выражение для контурного тока в виде алгебраической суммы составляющих токов, вызванных каждой из ЭДС ветвей в отдельности. Поскольку систему независимых контуров всегда можно выбрать так, что рассматриваемая h-я ветвь войдет только в один-й контур, т.е. контурный токбудет равен действительному токуh-й ветви, то принцип наложения справедлив для токовлюбых ветвей и, следовательно, справедливость принципа наложения доказана.Таким образом, при определении токов ветвей при помощи метода наложения следует поочередно оставлять в схеме по одному источнику, заменяя остальные их внутренними сопротивлениями, и рассчитать составляющие искомых токов в этих схемах. После этого полученные результаты для соответствующих ветвей суммируются – это и будут искомые токи в ветвях исходной цепи.

Электрические цепи считают простыми, если они содержат только последовательное или только параллельное соединение элементов.

Участок цепи, содержащий и параллельное, и последовательное соединение элементов называют сложным или участком со смешанным соединением элементов.

Преобразования электрических цепей считают эквивалентными, если при их выполнении напряжения и токи на интересующих нас участках не изменяются.

При преобразовании сложных электрических цепей пользуются последовательным методом, то есть последовательно преобразуют участки цепи, имеющие простое соединение элементов.

4.3.1. Эквивалентное преобразование схемы при последовательном соединении элементов

Рассмотрим комплексную схему замещения электрической цепи, состоящей из последовательного соединения отдельных элементов (рис. 4.6). Данная цепь представляет собой контур, у которого через все элементы протекает общий для всех элементов ток. Эквивалентно преобразуем схему к одному элементу, но так чтобы напряжение и ток на выводах схемы сохранили свои значения. Это возможно, когда сопротивление исходной цепи и эквивалентной цепи одинаковы. На основании закона Ома и второго закона Кирхгофа в комплексной форме можно записать уравнение электрического равновесия

Напряжение и ток для обеих схем одинаковы, когда

Вывод. При эквивалентном преобразовании, при последовательном соединении элементов их комплексные сопротивления складываются.

1) Эквивалентное преобразование сопротивлений

Рассмотрим электрическую цепь схема, которой приведена на рис.4.7. Эквивалентно преобразуем сопротивления R 1 и R 2 к одному сопротивлению R экв.

Учитывая, что Z R =R, и соотношение полученное выше, получим R экв =R 1 +R 2 .

2) Эквивалентное преобразование емкостей.

Рассмотрим электрическую цепь схема, которой приведена на рис.4.8. Эквивалентно преобразуем емкости С 1 и С 2 к одной эквивалентной емкости С экв.

Учитывая, что Z С =1/(jωC), и соотношение полученное выше, получим

.

3) Эквивалентное преобразование индуктивностей

Рассмотрим электрическую цепь схема, которой приведена на рис.4.9 . Эквивалентно преобразуем индуктивностиL 1 и L 2 к одной эквивалентной индуктивности L экв.

Учитывая, что Z L =jωL, и соотношение полученное выше, получим L экв =L 1 +L 2 .

4.3.2. Эквивалентное преобразование схемы при параллельном соединении элементов

Рассмотрим комплексную схему замещения электрической цепи, состоящей из параллельного соединения отдельных элементов (рис. 4.10). Данная цепь содержит два узла, между которыми включены все элементы. Общим для всех элементов является напряжение на них. Эквивалентно преобразуем схему к одному элементу, но так чтобы напряжение и ток на выводах схемы сохранили свои значения. Это возможно, когда сопротивление исходной цепи и эквивалентной цепи одинаковы. На основании закона Ома и первого закона Кирхгофа в комплексной форме можно записать уравнение электрического равновесия

I=I 1 +I 2 +…+I n , или (U/Z экв) = (U/Z 1) + (U/Z 2) + …(U/Z n) .

Отсюдаследует, что

(1/Z экв) = (1/Z 1) + (1/Z 2) + … +(1/Z n), или Z экв = 1/[(1/Z 1) + (1/Z 2) + … +(1/Z n)].

Учитывая, (1/Z ) = Y – комплексная проводимость элемента, можно записать, что

Y экв = Y 1 + Y 2 + … + Y n .

Вывод. При эквивалентном преобразовании, при параллельном соединении элементов их комплексные проводимости складываются.

Анализ любой электрической цепи начинается с построения ее модели, которая описывается схемой замещения.

В электрических схемах различают следующие простейшие соединения пассивных элементов: последовательное, параллельное, соединение в виде треугольника и в виде трехлучевой звезды. Прежде чем начинать анализ схемы, желательно проводить предварительные эквивалентные преобразования схемы. Суть таких преобразований состоит в замене некоторой части схемы другой, эквивалентной ей в электрическом отношении, но с более удобной для расчета структурой. Чаще других используют два вида таких преобразований: замену последовательно и параллельно соединенных элементов одним эквивалентным; преобразование трехлучевой звезды в треугольник и обратно.

Эквивалентное сопротивление последовательно соединенных элементов равно арифметической сумме их сопротивлений:

. (1.26)

Эквивалентная проводимость параллельно соединенных резистивных элементов равна арифметической сумме их проводимостей:

. (1.27)

При преобразовании треугольника (рис.1.14) в звезду (рис.1.15) при заданных сопротивлениях сторон треугольника RАБ, RБВ, RBA определяются эквивалентные сопротивления лучей звезды RA, RБ, RB.

Рис. 1.14. Схема цепи – треугольник

Рис. 1.15. Схема цепи – звезда

Эквивалентные сопротивления лучей звезды равны:

При преобразовании звезды в эквивалентный треугольник при заданных RA, RБ, RB эквивалентные сопротивления определяются следующим образом.

Неразветвлённая электрическая цепь характеризуется тем, что на всех её участках протекает один и тот же ток, а разветвлённая содержит одну или несколько узловых точек, при этом на участках цепи протекают разные токи.

При расчётах неразветвлённых и разветвлённых линейных электрических цепей постоянного тока могут быть использованы различные методы, выбор которых зависит от вида электрической цепи.

При расчётах сложных электрических цепей во многих случаях целесообразно производить их упрощение путём свертывания, заменяя отдельные участки цепи с последовательным, параллельным и смешанным соединениями сопротивлений одним эквивалентным сопротивлением с помощью метода эквивалентных преобразований электрических цепей.

Рис. 1.1 Рис.1.2

Электрическая цепь с последовательным соединением сопротивлений

(рис. 1.1) заменяется при этом цепью с одним эквивалентным сопротивлением R эк (рис. 1.2), равным сумме всех сопротивлений цепи:

где R 1 , R 2 , R 3 ,…, R n - сопротивления отдельных участков цепи. При этом ток I электрической цепи сохраняет неизменным своё значение, все сопротивления обтекаются одним и тем же током. Напряжения (падения напряжения) на сопротивлениях при их последовательном соединении распределяются пропорционально сопротивлениям отдельных участков:

Рис. 1.3 Рис. 1.4

При параллельном соединении сопротивлений все сопротивления находятся под одним и тем же напряжением U (рис. 1.3). Электрическую цепь, состоящую из параллельно соединённых сопротивлений, целесообразно заменить цепью с эквивалентным сопротивлением R эк (рис. 1.2), которое определяется из выражения:

обратных сопротивлениям участков параллельных ветвей электрической цепи (сумма проводимостей ветвей цепи); R к − сопротивление параллельного участка цепи; q эк эквивалентная проводимость параллельного участка цепи,

n – число параллельных ветвей цепи. Эквивалентное сопротивление участка цепи, состоящего из одинаковых параллельно соединённых сопротивлений, При параллельном соединении двух сопротивлений R 1 иR 2 эквивалентное coпротивление

а токи распределяются обратно пропорционально их сопротивлениям, при этом U = R 1 I 1 = R 2 I 2 = R 3 I 3 =…= R n I n .

При смешанном соединении сопротивлений (рис. 1.4), т. е. при наличии участков электрической цепи с последовательным и параллельным

соединением сопротивлений, эквивалентное сопротивление (рис. 1.2) цепи

определяется в соответствии с выражением:

Литература. ГОСТ Р 52002 – 2003; с. 15 – 18, 22 − 26;

с. 14 – 17; с. 18 – 23, 25 – 29.

Пример решения

Определитьобщее эквивалентное сопротивление R эк и распределение токов в электрической цепи постоянного тока (рис. 1.5). Сопротивления резисторов R 1 =R 2 =1 Oм ; R 3 =6 Oм ; R 5 =R 6 =1 Oм ; R 4 =R 7 =6 Oм ; R 8 =10 Oм ; R 9 =5 Oм ; R 10 =10 Oм . Напряжение питающей сети U=120 В .

Решение . Сопротивление участка цепи между узлами 1 и 4 :

1" и 3 цепи:

Сопротивление участка между узлами 1"" и 2 цепи:

Эквивалентное сопротивление всей электрической цепи:

Ток в неразветвлённой электрической части цепи:

Напряжение между узлами 1 и 2 цепи в соответствии со II законом Кирхгофа .