Динамическая типизация. Типизация языков программирования Что такое динамическая типизация

Чтобы максимально просто объяснить две абсолютно разные технологии, начнём сначала. Первое, с чем сталкивается программист при написании кода - объявление переменных. Вы можете заметить, что, например, в языке программирования C++ необходимо указывать тип переменной. То есть если вы объявляете переменную x, то обязательно нужно добавить int - для хранения целочисленных данных, float - для хранения данных с плавающей точкой, char - для символьных данных, и другие доступные типы. Следовательно, в C++ используется статическая типизация, так же как и в его предшественнике C.

Как работает статическая типизация?

В момент объявления переменной компилятору нужно знать, какие функции и параметры он может использовать по отношению к ней, а какие нет. Поэтому программисту необходимо сразу четко обозначить тип переменной. Обратите внимание также на то, что в процессе выполнения кода тип переменной изменить нельзя. Зато можно создать свой собственный тип данных и использовать его в дальнейшем.

Рассмотрим небольшой пример. При инициализации переменной x (int x;) мы указываем идентификатор int - это сокращение от который хранит только целые числа в диапазоне от - 2 147 483 648 до 2 147 483 647. Таким образом, компилятор понимает, что может выполнять над этой переменной математические значения - сумму, разность, умножение и деление. А вот, например, функцию strcat(), которая соединяет два значения типа char, применить к x нельзя. Ведь если снять ограничения и попробовать соединить два значения int символьным методом, тогда произойдет ошибка.

Зачем понадобились языки с динамической типизацией?

Несмотря на некоторые ограничения, статическая типизация имеет ряд преимуществ, и не вносит большого дискомфорта в написание алгоритмов. Тем не менее, для различных целей могут понадобиться и более «свободные правила» в отношении типов данных.

Удачный пример, который можно привести - JavaScript. Этот язык программирования обычно используют для встраивания в фреймворк с целью получения функционального доступа к объектам. Из-за такой особенности он приобрел большую популярность в web-технологиях, где идеально чувствует себя динамичная типизация. В разы упрощается написание небольших скриптов и макросов. А также появляется преимущество в повторном использовании переменных. Но такую возможность используют довольно редко, из-за возможных путаниц и ошибок.

Какой вид типизации лучше?

Споры о том, что динамическая типизация лучше, чем строгая, не прекращаются и по сей день. Обычно они возникают у узкоспециализированных программистов. Безусловно, веб-разработчики повседневно используют все преимущества динамической типизации для создания качественного кода и итогового программного продукта. В то же время системные программисты, которые разрабатывают сложнейшие алгоритмы на низкоуровневых языках программирования, обычно не нуждаются в таких возможностях, поэтому им вполне хватает статической типизации. Бывают, конечно, исключения из правил. Например, полностью реализована динамическая типизация в Python.

Поэтому определять лидерство той или иной технологии, нужно исходя только из входных параметров. Для разработки легких и гибких фреймворков лучше подойдет динамическая типизация, в то время как для создания массивной и сложной архитектуры лучше использовать строгую типизацию.

Разделение на «сильную» и «слабую» типизацию

Среди как русскоязычных, так и англоязычных материалов по программированию можно встретить выражение - «сильная» типизация. Это не отдельное понятие, а точнее такого понятия в профессиональном лексиконе вообще не существует. Хотя многие пытаются его по-разному интерпретировать. На самом деле, «сильную» типизацию следует понимать как ту, которая удобна именно для вас и с которой максимально комфортно работать. А «слабая» - неудобная и неэффективная для вас система.

Особенность динамики

Наверняка вы замечали, что на стадии написании кода компилятор анализирует написанные конструкции и выдаст ошибку при несовпадении типов данных. Но только не JavaScript. Его уникальность в том, что он в любом случае произведет операцию. Вот легкий пример - мы хотим сложить символ и число, что не имеет смысла: «x» + 1.

В статических языках, в зависимости от самого языка, эта операция может иметь разные последствия. Но в большинстве случаев, её даже не допустят до компиляции, так как компилятор выдаст ошибку сразу после написания такой конструкции. Он просто посчитает её некорректной и будет полностью прав.

В динамических языках эту операцию выполнить можно, но в большинстве случаев последует ошибка уже на стадии выполнения кода, так как компилятор не анализирует в реальном времени типы данных и не может принимать решение об ошибках в этой области. JavaScript уникален тем, что выполнит такую операцию и получит набор нечитаемых символов. В отличие от других языков, которые просто завершат работу программы.

Возможны ли смежные архитектуры?

На данный момент никакой смежной технологии, которая могла бы одновременно поддерживать статическую и динамическую типизацию в языках программирования, не существует. И можно уверенно сказать, что не появится. Так как архитектуры отличаются друг от друга в фундаментальных понятиях и не могут использоваться одновременно.

Но, тем не менее, в некоторых языках можно поменять типизацию с помощью дополнительных фреймворков.

  • В языке программирования Delphi - подсистема Variant.
  • В языке программирования AliceML - дополнительные пакеты.
  • В языке программирования Haskell - библиотека Data.Dynamic.

Когда строгая типизация действительно лучше динамической?

Однозначно утвердить преимущество строгой типизации над динамической можно только в том случае, если вы начинающий программист. В этом сходятся абсолютно все IT-специалисты. При обучении фундаментальным и базовым навыкам программирования лучше использовать строгую типизацию, чтобы приобрести некую дисциплину при работе с переменными. Затем, при необходимости, можно перейти на динамику, но навыки работы, приобретенные со строгой типизацией, сыграют свою немаловажную роль. Вы научитесь тщательно проверять переменные и учитывать их типы, при проектировании и написании кода.

Преимущества динамической типизации

  • Сводит к минимуму количество символов и строк кода из-за ненадобности предварительного объявления переменных и указания их типа. Тип будет определен автоматически, после присвоения значения.
  • В небольших блоках кода упрощается визуальное и логическое восприятие конструкций, из-за отсутствия «лишних» строк объявления.
  • Динамика положительно влияет на скорость работы компилятора, так как он не учитывает типы, и не проверяет их на соответствие.
  • Повышает гибкость и позволяет создавать универсальные конструкции. К примеру, при создании метода, который должен взаимодействовать с массивом данных, не нужно создавать отдельные функции для работы с числовыми, текстовыми и другими типами массивов. Достаточно написать один метод, и он будет работать с любыми типами.
  • Упрощает вывод данных из систем управления базами данных, поэтому динамическую типизацию активно используют при разработке веб-приложений.

Подробнее о языках программирования со статической типизацией

  • C++ - наиболее распространенный язык программирования общего назначения. На сегодняшний день имеет несколько крупных редакций и большую армию пользователей. Стал популярным благодаря своей гибкости, возможности безграничного расширения и поддержке различных парадигм программирования.

  • Java - язык программирования, который использует объектно-ориентированный подход. Получил распространение благодаря мультиплатформенности. При компиляции код интерпретируется в байт-код, который может выполняться на любой операционной системе. Java и динамическая типизация несовместимы, так как язык строго типизирован.

  • Haskell - также один из популярных языков, код которого может интегрироваться в другие языки и взаимодействовать вместе с ними. Но, несмотря на такую гибкость, имеет строгую типизацию. Оснащен большим встроенным набором типов и возможностью создания собственных.

Подробнее о языках программирования с динамическим видом типизации

  • Python - язык программирования, который создавался прежде всего для облегчения работы программиста. Имеет ряд функциональных улучшений, благодаря которым увеличивает читабельность кода и его написание. Во многом этого удалось добиться благодаря динамической типизации.

  • PHP - язык для создания скриптов. Повсеместно применяется в веб-разработке, обеспечивая взаимодействие с базами данных, для создания интерактивных динамических веб-страниц. Благодаря динамической типизации существенно облегчается работы с базами данных.

  • JavaScript - уже упоминавшийся выше язык программирования, который нашел применение в веб-технологиях для создания веб-сценариев, выполняющихся на стороне клиента. Динамическая типизация используется для облегчения написания кода, ведь обычно он разбивается на небольшие блоки.

Динамический вид типизации - недостатки

  • Если была допущена опечатка или грубая ошибка при использовании или объявлении переменных, то компилятор не отобразит её. А проблемы возникнут при выполнении программы.
  • При использовании статической типизации все объявления переменных и функций обычно выносятся в отдельный файл, который позволяет в дальнейшем с легкостью создать документацию или вообще использовать сам файл как документацию. Соответственно, динамическая типизация не позволяет использовать такую особенность.

Подведем итог

Статичная и динамическая типизации используются для совершенно разных целей. В некоторых случаях разработчики преследуют функциональные преимущества, а в некоторых - чисто личные мотивы. В любом случае чтобы определиться с видом типизации для себя, необходимо тщательно изучить их на практике. В дальнейшем при создании нового проекта и выбора типизации для него это сыграет большую роль и даст понимание эффективного выбора.

Эта статья содержит необходимый минимум тех вещей, которые просто необходимо знать о типизации, чтобы не называть динамическую типизацию злом, Lisp - бестиповым языком, а C - языком со строгой типизацией.

В полной версии находится подробное описание всех видов типизации, приправленное примерами кода, ссылками на популярные языки программирования и показательными картинками.

Рекомендую прочитать сначала краткую версию статьи, а затем при наличии желания и полную.

Краткая версия

Языки программирования по типизации принято делить на два больших лагеря - типизированные и нетипизированные (бестиповые). К первому например относятся C, Python, Scala, PHP и Lua, а ко второму - язык ассемблера, Forth и Brainfuck.

Так как "бестиповая типизация" по своей сути - проста как пробка, дальше она ни на какие другие виды не делится. А вот типизированные языки разделяются еще на несколько пересекающихся категорий:

  • Статическая / динамическая типизация. Статическая определяется тем, что конечные типы переменных и функций устанавливаются на этапе компиляции. Т.е. уже компилятор на 100% уверен, какой тип где находится. В динамической типизации все типы выясняются уже во время выполнения программы.

    Примеры:
    Статическая: C, Java, C#;
    Динамическая: Python, JavaScript, Ruby.

  • Сильная / слабая типизация (также иногда говорят строгая / нестрогая). Сильная типизация выделяется тем, что язык не позволяет смешивать в выражениях различные типы и не выполняет автоматические неявные преобразования, например нельзя вычесть из строки множество. Языки со слабой типизацией выполняют множество неявных преобразований автоматически, даже если может произойти потеря точности или преобразование неоднозначно.

    Примеры:
    Сильная: Java, Python, Haskell, Lisp;
    Слабая: C, JavaScript, Visual Basic, PHP.

  • Явная / неявная типизация. Явно-типизированные языки отличаются тем, что тип новых переменных / функций / их аргументов нужно задавать явно. Соответственно языки с неявной типизацией перекладывают эту задачу на компилятор / интерпретатор.

    Примеры:
    Явная: C++, D, C#
    Неявная: PHP, Lua, JavaScript

Также нужно заметить, что все эти категории пересекаются, например язык C имеет статическую слабую явную типизацию, а язык Python - динамическую сильную неявную.

Тем-не менее не бывает языков со статической и динамической типизаций одновременно. Хотя забегая вперед скажу, что тут я вру - они действительно существуют, но об этом позже.

Подробная версия

Если краткой версии Вам показалось недостаточно, хорошо. Не зря же я писал подробную? Главное, что в краткой версии просто невозможно было уместить всю полезную и интересную информацию, а подробная будет возможно слишком длинной, чтобы каждый смог ее прочесть, не напрягаясь.

Бестиповая типизация

В бестиповых языках программирования - все сущности считаются просто последовательностями бит, различной длины.

Бестиповая типизация обычно присуща низкоуровневым (язык ассемблера, Forth) и эзотерическим (Brainfuck, HQ9, Piet) языкам. Однако и у нее, наряду с недостатками, есть некоторые преимущества.

Преимущества
  • Позволяет писать на предельно низком уровне, причем компилятор / интерпретатор не будет мешать какими-либо проверками типов. Вы вольны производить любые операции над любыми видами данных.
  • Получаемый код обычно более эффективен.
  • Прозрачность инструкций. При знании языка обычно нет сомнений, что из себя представляет тот или иной код.
Недостатки
  • Сложность. Часто возникает необходимость в представлении комплексных значений, таких как списки, строки или структуры. С этим могут возникнуть неудобства.
  • Отсутствие проверок. Любые бессмысленные действия, например вычитание указателя на массив из символа будут считаться совершенно нормальными, что чревато трудноуловимыми ошибками.
  • Низкий уровень абстракции. Работа с любым сложным типом данных ничем не отличается от работы с числами, что конечно будет создавать много трудностей.
Сильная безтиповая типизация?

Да, такое существует. Например в языке ассемблера (для архитектуры х86/х86-64, других не знаю) нельзя ассемблировать программу, если вы попытаетесь загрузить в регистр cx (16 бит) данные из регистра rax (64 бита).

mov cx, eax ; ошибка времени ассемблирования

Так получается, что в ассемлере все-таки есть типизация? Я считаю, что этих проверок недостаточно. А Ваше мнение, конечно, зависит только от Вас.

Статическая и динамическая типизации

Главное, что отличает статическую (static) типизацию от динамической (dynamic) то, что все проверки типов выполняются на этапе компиляции, а не этапе выполнения.

Некоторым людям может показаться, что статическая типизация слишком ограничена (на самом деле так и есть, но от этого давно избавились с помощью некоторых методик). Некоторым же, что динамически типизированные языки - это игра с огнем, но какие же черты их выделяют? Неужели оба вида имеют шансы на существование? Если нет, то почему много как статически, так и динамически типизированных языков?

Давайте разберемся.

Преимущества статической типизации
  • Проверки типов происходят только один раз - на этапе компиляции. А это значит, что нам не нужно будет постоянно выяснять, не пытаемся ли мы поделить число на строку (и либо выдать ошибку, либо осуществить преобразование).
  • Скорость выполнения. Из предыдущего пункта ясно, что статически типизированные языки практически всегда быстрее динамически типизированных.
  • При некоторых дополнительных условиях, позволяет обнаруживать потенциальные ошибки уже на этапе компиляции.
Преимущества динамической типизации
  • Простота создания универсальных коллекций - куч всего и вся (редко возникает такая необходимость, но когда возникает динамическая типизация выручит).
  • Удобство описания обобщенных алгоритмов (например сортировка массива, которая будет работать не только на списке целых чисел, но и на списке вещественных и даже на списке строк).
  • Легкость в освоении - языки с динамической типизацией обычно очень хороши для того, чтобы начать программировать.

Обобщенное программирование

Хорошо, самый важный аргумент за динамическую типизацию - удобство описания обобщенных алгоритмов. Давайте представим себе проблему - нам нужна функция поиска по нескольким массивам (или спискам) - по массиву целых чисел, по массиву вещественных и массиву символов.

Как же мы будем ее решать? Решим ее на 3-ех разных языках: одном с динамической типизацией и двух со статической.

Алгоритм поиска я возьму один из простейших - перебор. Функция будет получать искомый элемент, сам массив (или список) и возвращать индекс элемента, или, если элемент не найден - (-1).

Динамическое решение (Python):

Def find(required_element, list): for (index, element) in enumerate(list): if element == required_element: return index return (-1)

Как видите, все просто и никаких проблем с тем, что список может содержать хоть числа, хоть списки, хоть другие массивы нет. Очень хорошо. Давайте пойдем дальше - решим эту-же задачу на Си!

Статическое решение (Си):

Unsigned int find_int(int required_element, int array, unsigned int size) { for (unsigned int i = 0; i < size; ++i) if (required_element == array[i]) return i; return (-1); } unsigned int find_float(float required_element, float array, unsigned int size) { for (unsigned int i = 0; i < size; ++i) if (required_element == array[i]) return i; return (-1); } unsigned int find_char(char required_element, char array, unsigned int size) { for (unsigned int i = 0; i < size; ++i) if (required_element == array[i]) return i; return (-1); }

Ну, каждая функция в отдельности похожа на версию из Python, но почему их три? Неужели статическое программирование проиграло?

И да, и нет. Есть несколько методик программирования, одну из которых мы сейчас рассмотрим. Она называется обобщенное программирование и язык C++ ее неплохо поддерживает. Давайте посмотрим на новую версию:

Статическое решение (обобщенное программирование, C++):

Template unsigned int find(T required_element, std::vector array) { for (unsigned int i = 0; i < array.size(); ++i) if (required_element == array[i]) return i; return (-1); }

Хорошо! Это выглядит не сильно сложнее чем версия на Python и при этом не пришлось много писать. Вдобавок мы получили реализацию для всех массивов, а не только для 3-ех, необходимых для решения задачи!

Эта версия похоже именно то, что нужно - мы получаем одновременно плюсы статической типизации и некоторые плюсы динамической.

Здорово, что это вообще возможно, но может быть еще лучше. Во-первых обобщенное программирование может быть удобнее и красивее (например в языке Haskell). Во-вторых помимо обобщенного программирования также можно применить полиморфизм (результат будет хуже), перегрузку функций (аналогично) или макросы.

Статика в динамике

Также нужно упомянуть, что многие статические языки позволяют использовать динамическую типизацию, например:

  • C# поддерживает псевдо-тип dynamic.
  • F# поддерживает синтаксический сахар в виде оператора?, на базе чего может быть реализована имитация динамической типизации.
  • Haskell - динамическая типизация обеспечивается модулем Data.Dynamic.
  • Delphi - посредством специального типа Variant.

Также, некоторые динамически типизированные языки позволяют воспользоваться преимуществами статической типизации:

  • Common Lisp - декларации типов.
  • Perl - с версии 5.6, довольно ограниченно.

Сильная и слабая типизации

Языки с сильной типизацией не позволяют смешивать сущности разных типов в выражениях и не выполняют никаких автоматических преобразований. Также их называют "языки с строгой типизацией". Английский термин для этого - strong typing.

Слабо типизированные языки, наоборот всячески способствуют, чтобы программист смешивал разные типы в одном выражении, причем компилятор сам приведет все к единому типу. Также их называют "языки с нестрогой типизацией". Английский термин для этого - weak typing.

Слабую типизацию часто путают с динамической, что совершенно неверно. Динамически типизированный язык может быть и слабо и сильно типизирован.

Однако мало, кто придает значение строгости типизации. Часто заявляют, что если язык статически типизирован, то Вы сможете отловить множество потенциальных ошибок при компиляции. Они Вам врут!

Язык при этом должен иметь еще и сильную типизацию. И правда, если компилятор вместо сообщения об ошибке будет просто прибавлять строку к числу, или что еще хуже, вычтет из одного массива другой, какой нам толк, что все "проверки" типов будут на этапе компиляции? Правильно - слабая статическая типизация еще хуже, чем сильная динамическая! (Ну, это мое мнение)

Так что-же у слабой типизации вообще нет плюсов? Возможно так выглядит, однако несмотря на то, что я ярый сторонник сильной типизации, должен согласиться, что у слабой тоже есть преимущества.

Хотите узнать какие?

Преимущества сильной типизации
  • Надежность - Вы получите исключение или ошибку компиляции, взамен неправильного поведения.
  • Скорость - вместо скрытых преобразований, которые могут быть довольно затратными, с сильной типизацией необходимо писать их явно, что заставляет программиста как минимум знать, что этот участок кода может быть медленным.
  • Понимание работы программы - опять-же, вместо неявного приведения типов, программист пишет все сам, а значит примерно понимает, что сравнение строки и числа происходит не само-собой и не по-волшебству.
  • Определенность - когда вы пишете преобразования вручную вы точно знаете, что вы преобразуете и во что. Также вы всегда будете понимать, что такие преобразования могут привести к потере точности и к неверным результатам.
Преимущества слабой типизации
  • Удобство использования смешанных выражений (например из целых и вещественных чисел).
  • Абстрагирование от типизации и сосредоточение на задаче.
  • Краткость записи.

Ладно, мы разобрались, оказывается у слабой типизации тоже есть преимущества! А есть ли способы перенести плюсы слабой типизации в сильную?

Оказывается есть и даже два.

Неявное приведение типов, в однозначных ситуациях и без потерь данных

Ух… Довольно длинный пункт. Давайте я буду дальше сокращать его до "ограниченное неявное преобразование" Так что же значит однозначная ситуация и потери данных?

Однозначная ситуация, это преобразование или операция в которой сущность сразу понятна. Вот например сложение двух чисел - однозначная ситуация. А преобразование числа в массив - нет (возможно создастся массив из одного элемента, возможно массив, с такой длинной, заполненный элементами по-умолчанию, а возможно число преобразуется в строку, а затем в массив символов).

Потеря данных это еще проще. Если мы преобразуем вещественное число 3.5 в целое - мы потеряем часть данных (на самом деле эта операция еще и неоднозначная - как будет производиться округление? В большую сторону? В меньшую? Отбрасывание дробной части?).

Преобразования в неоднозначных ситуациях и преобразования с потерей данных - это очень, очень плохо. Ничего хуже этого в программировании нет.

Если вы мне не верите, изучите язык PL/I или даже просто поищите его спецификацию. В нем есть правила преобразования между ВСЕМИ типами данных! Это просто ад!

Ладно, давайте вспомним про ограниченное неявное преобразование. Есть ли такие языки? Да, например в Pascal Вы можете преобразовать целое число в вещественное, но не наоборот. Также похожие механизмы есть в C#, Groovy и Common Lisp.

Ладно, я говорил, что есть еще способ получить пару плюсов слабой типизации в сильном языке. И да, он есть и называется полиморфизм конструкторов.

Я поясню его на примере замечательного языка Haskell.

Полиморфные конструкторы появились в результате наблюдения, что чаще всего безопасные неявные преобразования нужны при использовании числовых литералов.

Например в выражении pi + 1 , не хочется писать pi + 1.0 или pi + float(1) . Хочется написать просто pi + 1 !

И это сделано в Haskell, благодаря тому, что у литерала 1 нет конкретного типа. Это ни целое, ни вещественное, ни комплексное. Это же просто число!

В итоге при написании простой функции sum x y , перемножающей все числа от x до y (с инкрементом в 1), мы получаем сразу несколько версий - sum для целых, sum для вещественных, sum для рациональных, sum для комплексных чисел и даже sum для всех тех числовых типов что Вы сами определили.

Конечно спасает этот прием только при использовании смешанных выражений с числовыми литералами, а это лишь верхушка айсберга.

Таким образом можно сказать, что лучшим выходом будет балансирование на грани, между сильной и слабой типизацией. Но пока идеальный баланс не держит ни один язык, поэтому я больше склоняюсь к сильно типизированным языкам (таким как Haskell, Java, C#, Python), а не к слабо типизированным (таким как C, JavaScript, Lua, PHP).

Явная и неявная типизации

Язык с явной типизацией предполагает, что программист должен указывать типы всех переменных и функций, которые объявляет. Английский термин для этого - explicit typing.

Язык с неявной типизацией, напротив, предлагает Вам забыть о типах и переложить задачу вывода типов на компилятор или интерпретатор. Английски термин для этого - implicit typing.

По-началу можно решить, что неявная типизация равносильна динамической, а явная - статической, но дальше мы увидим, что это не так.

Есть ли плюсы у каждого вида, и опять же, есть ли их комбинации и есть ли языки с поддержкой обоих методов?

Преимущества явной типизации
  • Наличие у каждой функции сигнатуры (например int add(int, int)) позволяет без проблем определить, что функция делает.
  • Программист сразу записывает, какого типа значения могут храниться в конкретной переменной, что снимает необходимость запоминать это.
Преимущества неявной типизации
  • Сокращение записи - def add(x, y) явно короче, чем int add(int x, int y) .
  • Устойчивость к изменениям. Например если в функции временная переменная была того-же типа, что и входной аргумент, то в явно типизированном языке при изменении типа входного аргумента нужно будет изменить еще и тип временной переменной.

Хорошо, видно, что оба подхода имеют как плюсы так и минусы (а кто ожидал чего-го еще?), так давайте поищем способы комбинирования этих двух подходов!

Явная типизация по-выбору

Есть языки, с неявной типизацией по-умолчанию и возможностью указать тип значений при необходимости. Настоящий тип выражения транслятор выведет автоматически. Один из таких языков - Haskell, давайте я приведу простой пример, для наглядности:

Без явного указания типа add (x, y) = x + y -- Явное указание типа add:: (Integer, Integer) -> Integer add (x, y) = x + y

Примечание: я намерено использовал некаррированную функцию, а также намерено записал частную сигнатуру вместо более общей add:: (Num a) -> a -> a -> a , т.к. хотел показать идею, без объяснения синтаксиса Haskell"а.

Хм. Как мы видим, это очень красиво и коротко. Запись функции занимает всего 18 символов на одной строчке, включая пробелы!

Однако автоматический вывод типов довольно сложная вещь, и даже в таком крутом языке как Haskell, он иногда не справляется. (как пример можно привести ограничение мономорфизма)

Есть ли языки с явной типизацией по-умолчанию и неявной по-необходимости? Кон
ечно.

Неявная типизация по-выбору

В новом стандарте языка C++, названном C++11 (ранее назывался C++0x), было введено ключевое слово auto, благодаря которому можно заставить компилятор вывести тип, исходя из контекста:

Давайте сравним: // Ручное указание типа unsigned int a = 5; unsigned int b = a + 3; // Автоматический вывод типа unsigned int a = 5; auto b = a + 3;

Неплохо. Но запись сократилась не сильно. Давайте посмотрим пример с итераторами (если не понимаете, не бойтесь, главное заметьте, что запись благодаря автоматическому выводу очень сильно сокращается):

// Ручное указание типа std::vector vec = randomVector(30); for (std::vector::const_iterator it = vec.cbegin(); ...) { ... } // Автоматический вывод типа auto vec = randomVector(30); for (auto it = vec.cbegin(); ...) { ... }

Ух ты! Вот это сокращение. Ладно, но можно ли сделать что-нибудь в духе Haskell, где тип возвращаемого значения будет зависеть от типов аргументов?

И опять ответ да, благодаря ключевому слову decltype в комбинации с auto:

// Ручное указание типа int divide(int x, int y) { ... } // Автоматический вывод типа auto divide(int x, int y) -> decltype(x / y) { ... }

Может показаться, что эта форма записи не сильно хороша, но в комбинации с обобщенным программированием (templates / generics) неявная типизация или автоматический вывод типов творят чудеса.

Некоторые языки программирования по данной классификации

Я приведу небольшой список из популярных языков и напишу как они подразделяются по каждой категории "типизаций".

JavaScript - Динамическая / Слабая / Неявная Ruby - Динамическая / Сильная / Неявная Python - Динамическая / Сильная / Неявная Java - Статическая / Сильная / Явная PHP - Динамическая / Слабая / Неявная C - Статическая / Слабая / Явная C++ - Статическая / Полусильная / Явная Perl - Динамическая / Слабая / Неявная Objective-C - Статическая / Слабая / Явная C# - Статическая / Сильная / Явная Haskell - Статическая / Сильная / Неявная Common Lisp - Динамическая / Сильная / Неявная

Возможно я где-то ошибся, особенно с CL, PHP и Obj-C, если по какому-то языку у Вас другое мнение - напишите в комментариях.

Заключение

Окей. Уже скоро будет светло и я чувствую, что про типизацию больше нечего сказать. Ой как? Тема бездонная? Очень много осталось недосказано? Прошу в комментарии, поделитесь полезной информацией.

Эта статья содержит необходимый минимум тех вещей, которые просто необходимо знать о типизации, чтобы не называть динамическую типизацию злом, Lisp - бестиповым языком, а C - языком со строгой типизацией.

В полной версии находится подробное описание всех видов типизации, приправленное примерами кода, ссылками на популярные языки программирования и показательными картинками.

Рекомендую прочитать сначала краткую версию статьи, а затем при наличии желания и полную.

Краткая версия

Языки программирования по типизации принято делить на два больших лагеря - типизированные и нетипизированные (бестиповые ). К первому например относятся C, Python, Scala, PHP и Lua, а ко второму - язык ассемблера, Forth и Brainfuck.

Так как «бестиповая типизация» по своей сути - проста как пробка, дальше она ни на какие другие виды не делится. А вот типизированные языки разделяются еще на несколько пересекающихся категорий:

  • Статическая / динамическая типизация. Статическая определяется тем, что конечные типы переменных и функций устанавливаются на этапе компиляции. Т.е. уже компилятор на 100% уверен, какой тип где находится. В динамической типизации все типы выясняются уже во время выполнения программы.

    Примеры:
    Статическая: C, Java, C#;
    Динамическая: Python, JavaScript, Ruby.

  • Сильная / слабая типизация (также иногда говорят строгая / нестрогая). Сильная типизация выделяется тем, что язык не позволяет смешивать в выражениях различные типы и не выполняет автоматические неявные преобразования, например нельзя вычесть из строки множество. Языки со слабой типизацией выполняют множество неявных преобразований автоматически, даже если может произойти потеря точности или преобразование неоднозначно.

    Примеры:
    Сильная: Java, Python, Haskell, Lisp;
    Слабая: C, JavaScript, Visual Basic, PHP.

  • Явная / неявная типизация. Явно-типизированные языки отличаются тем, что тип новых переменных / функций / их аргументов нужно задавать явно. Соответственно языки с неявной типизацией перекладывают эту задачу на компилятор / интерпретатор.

    Примеры:
    Явная: C++, D, C#
    Неявная: PHP, Lua, JavaScript

Также нужно заметить, что все эти категории пересекаются, например язык C имеет статическую слабую явную типизацию, а язык Python - динамическую сильную неявную.

Тем-не менее не бывает языков со статической и динамической типизаций одновременно. Хотя забегая вперед скажу, что тут я вру - они действительно существуют, но об этом позже.

Подробная версия

Если краткой версии Вам показалось недостаточно, хорошо. Не зря же я писал подробную? Главное, что в краткой версии просто невозможно было уместить всю полезную и интересную информацию, а подробная будет возможно слишком длинной, чтобы каждый смог ее прочесть, не напрягаясь.

Бестиповая типизация

В бестиповых языках программирования - все сущности считаются просто последовательностями бит, различной длины.

Бестиповая типизация обычно присуща низкоуровневым (язык ассемблера, Forth) и эзотерическим (Brainfuck, HQ9, Piet) языкам. Однако и у нее, наряду с недостатками, есть некоторые преимущества.

Преимущества
  • Позволяет писать на предельно низком уровне, причем компилятор / интерпретатор не будет мешать какими-либо проверками типов. Вы вольны производить любые операции над любыми видами данных.
  • Получаемый код обычно более эффективен.
  • Прозрачность инструкций. При знании языка обычно нет сомнений, что из себя представляет тот или иной код.
Недостатки
  • Сложность. Часто возникает необходимость в представлении комплексных значений, таких как списки, строки или структуры. С этим могут возникнуть неудобства.
  • Отсутствие проверок. Любые бессмысленные действия, например вычитание указателя на массив из символа будут считаться совершенно нормальными, что чревато трудноуловимыми ошибками.
  • Низкий уровень абстракции. Работа с любым сложным типом данных ничем не отличается от работы с числами, что конечно будет создавать много трудностей.
Сильная безтиповая типизация?
Да, такое существует. Например в языке ассемблера (для архитектуры х86/х86-64, других не знаю) нельзя ассемблировать программу, если вы попытаетесь загрузить в регистр cx (16 бит) данные из регистра rax (64 бита).

Mov cx, eax ; ошибка времени ассемблирования

Так получается, что в ассемлере все-таки есть типизация? Я считаю, что этих проверок недостаточно. А Ваше мнение, конечно, зависит только от Вас.

Статическая и динамическая типизации

Главное, что отличает статическую (static) типизацию от динамической (dynamic) то, что все проверки типов выполняются на этапе компиляции, а не этапе выполнения.

Некоторым людям может показаться, что статическая типизация слишком ограничена (на самом деле так и есть, но от этого давно избавились с помощью некоторых методик). Некоторым же, что динамически типизированные языки - это игра с огнем, но какие же черты их выделяют? Неужели оба вида имеют шансы на существование? Если нет, то почему много как статически, так и динамически типизированных языков?

Давайте разберемся.

Преимущества статической типизации
  • Проверки типов происходят только один раз - на этапе компиляции. А это значит, что нам не нужно будет постоянно выяснять, не пытаемся ли мы поделить число на строку (и либо выдать ошибку, либо осуществить преобразование).
  • Скорость выполнения. Из предыдущего пункта ясно, что статически типизированные языки практически всегда быстрее динамически типизированных.
  • При некоторых дополнительных условиях, позволяет обнаруживать потенциальные ошибки уже на этапе компиляции.
  • Ускорение разработки при поддержке IDE (отсеивание вариантов, заведомо не подходящих по типу).
Преимущества динамической типизации
  • Простота создания универсальных коллекций - куч всего и вся (редко возникает такая необходимость, но когда возникает динамическая типизация выручит).
  • Удобство описания обобщенных алгоритмов (например сортировка массива, которая будет работать не только на списке целых чисел, но и на списке вещественных и даже на списке строк).
  • Легкость в освоении - языки с динамической типизацией обычно очень хороши для того, чтобы начать программировать.

Обобщенное программирование
Хорошо, самый важный аргумент за динамическую типизацию - удобство описания обобщенных алгоритмов. Давайте представим себе проблему - нам нужна функция поиска по нескольким массивам (или спискам) - по массиву целых чисел, по массиву вещественных и массиву символов.

Как же мы будем ее решать? Решим ее на 3-ех разных языках: одном с динамической типизацией и двух со статической.

Алгоритм поиска я возьму один из простейших - перебор. Функция будет получать искомый элемент, сам массив (или список) и возвращать индекс элемента, или, если элемент не найден - (-1).

Динамическое решение (Python):
def find(required_element, list): for (index, element) in enumerate(list): if element == required_element: return index return (-1)

Как видите, все просто и никаких проблем с тем, что список может содержать хоть числа, хоть списки, хоть другие массивы нет. Очень хорошо. Давайте пойдем дальше - решим эту-же задачу на Си!

Статическое решение (Си):
unsigned int find_int(int required_element, int array, unsigned int size) { for (unsigned int i = 0; i < size; ++i) if (required_element == array[i]) return i; return (-1); } unsigned int find_float(float required_element, float array, unsigned int size) { for (unsigned int i = 0; i < size; ++i) if (required_element == array[i]) return i; return (-1); } unsigned int find_char(char required_element, char array, unsigned int size) { for (unsigned int i = 0; i < size; ++i) if (required_element == array[i]) return i; return (-1); }

Ну, каждая функция в отдельности похожа на версию из Python, но почему их три? Неужели статическое программирование проиграло?

И да, и нет. Есть несколько методик программирования, одну из которых мы сейчас рассмотрим. Она называется обобщенное программирование и язык C++ ее неплохо поддерживает. Давайте посмотрим на новую версию:

Статическое решение (обобщенное программирование, C++):
template unsigned int find(T required_element, std::vector array) { for (unsigned int i = 0; i < array.size(); ++i) if (required_element == array[i]) return i; return (-1); }

Хорошо! Это выглядит не сильно сложнее чем версия на Python и при этом не пришлось много писать. Вдобавок мы получили реализацию для всех массивов, а не только для 3-ех, необходимых для решения задачи!

Эта версия похоже именно то, что нужно - мы получаем одновременно плюсы статической типизации и некоторые плюсы динамической.

Здорово, что это вообще возможно, но может быть еще лучше. Во-первых обобщенное программирование может быть удобнее и красивее (например в языке Haskell). Во-вторых помимо обобщенного программирования также можно применить полиморфизм (результат будет хуже), перегрузку функций (аналогично) или макросы.

Статика в динамике
Также нужно упомянуть, что многие статические языки позволяют использовать динамическую типизацию, например:
  • C# поддерживает псевдо-тип dynamic.
  • F# поддерживает синтаксический сахар в виде оператора?, на базе чего может быть реализована имитация динамической типизации.
  • Haskell - динамическая типизация обеспечивается модулем Data.Dynamic.
  • Delphi - посредством специального типа Variant.
Также, некоторые динамически типизированные языки позволяют воспользоваться преимуществами статической типизации:
  • Common Lisp - декларации типов.
  • Perl - с версии 5.6, довольно ограниченно.
Итак, идем дальше?

Сильная и слабая типизации

Языки с сильной типизацией не позволяют смешивать сущности разных типов в выражениях и не выполняют никаких автоматических преобразований. Также их называют «языки с строгой типизацией». Английский термин для этого - strong typing.

Слабо типизированные языки, наоборот всячески способствуют, чтобы программист смешивал разные типы в одном выражении, причем компилятор сам приведет все к единому типу. Также их называют «языки с нестрогой типизацией». Английский термин для этого - weak typing.

Слабую типизацию часто путают с динамической, что совершенно неверно. Динамически типизированный язык может быть и слабо и сильно типизирован.

Однако мало, кто придает значение строгости типизации. Часто заявляют, что если язык статически типизирован, то Вы сможете отловить множество потенциальных ошибок при компиляции. Они Вам врут!

Язык при этом должен иметь еще и сильную типизацию. И правда, если компилятор вместо сообщения об ошибке будет просто прибавлять строку к числу, или что еще хуже, вычтет из одного массива другой, какой нам толк, что все «проверки» типов будут на этапе компиляции? Правильно - слабая статическая типизация еще хуже, чем сильная динамическая! (Ну, это мое мнение)

Так что-же у слабой типизации вообще нет плюсов? Возможно так выглядит, однако несмотря на то, что я ярый сторонник сильной типизации, должен согласиться, что у слабой тоже есть преимущества.

Хотите узнать какие?

Преимущества сильной типизации
  • Надежность - Вы получите исключение или ошибку компиляции, взамен неправильного поведения.
  • Скорость - вместо скрытых преобразований, которые могут быть довольно затратными, с сильной типизацией необходимо писать их явно, что заставляет программиста как минимум знать, что этот участок кода может быть медленным.
  • Понимание работы программы - опять-же, вместо неявного приведения типов, программист пишет все сам, а значит примерно понимает, что сравнение строки и числа происходит не само-собой и не по-волшебству.
  • Определенность - когда вы пишете преобразования вручную вы точно знаете, что вы преобразуете и во что. Также вы всегда будете понимать, что такие преобразования могут привести к потере точности и к неверным результатам.
Преимущества слабой типизации
  • Удобство использования смешанных выражений (например из целых и вещественных чисел).
  • Абстрагирование от типизации и сосредоточение на задаче.
  • Краткость записи.
Ладно, мы разобрались, оказывается у слабой типизации тоже есть преимущества! А есть ли способы перенести плюсы слабой типизации в сильную?

Оказывается есть и даже два.

Неявное приведение типов, в однозначных ситуациях и без потерь данных
Ух… Довольно длинный пункт. Давайте я буду дальше сокращать его до «ограниченное неявное преобразование» Так что же значит однозначная ситуация и потери данных?

Однозначная ситуация, это преобразование или операция в которой сущность сразу понятна. Вот например сложение двух чисел - однозначная ситуация. А преобразование числа в массив - нет (возможно создастся массив из одного элемента, возможно массив, с такой длинной, заполненный элементами по-умолчанию, а возможно число преобразуется в строку, а затем в массив символов).

Потеря данных это еще проще. Если мы преобразуем вещественное число 3.5 в целое - мы потеряем часть данных (на самом деле эта операция еще и неоднозначная - как будет производиться округление? В большую сторону? В меньшую? Отбрасывание дробной части?).

Преобразования в неоднозначных ситуациях и преобразования с потерей данных - это очень, очень плохо. Ничего хуже этого в программировании нет.

Если вы мне не верите, изучите язык PL/I или даже просто поищите его спецификацию. В нем есть правила преобразования между ВСЕМИ типами данных! Это просто ад!

Ладно, давайте вспомним про ограниченное неявное преобразование. Есть ли такие языки? Да, например в Pascal Вы можете преобразовать целое число в вещественное, но не наоборот. Также похожие механизмы есть в C#, Groovy и Common Lisp.

Ладно, я говорил, что есть еще способ получить пару плюсов слабой типизации в сильном языке. И да, он есть и называется полиморфизм конструкторов.

Я поясню его на примере замечательного языка Haskell.

Полиморфные конструкторы появились в результате наблюдения, что чаще всего безопасные неявные преобразования нужны при использовании числовых литералов.

Например в выражении pi + 1 , не хочется писать pi + 1.0 или pi + float(1) . Хочется написать просто pi + 1 !

И это сделано в Haskell, благодаря тому, что у литерала 1 нет конкретного типа. Это ни целое, ни вещественное, ни комплексное. Это же просто число!

В итоге при написании простой функции sum x y , перемножающей все числа от x до y (с инкрементом в 1), мы получаем сразу несколько версий - sum для целых, sum для вещественных, sum для рациональных, sum для комплексных чисел и даже sum для всех тех числовых типов что Вы сами определили.

Конечно спасает этот прием только при использовании смешанных выражений с числовыми литералами, а это лишь верхушка айсберга.

Таким образом можно сказать, что лучшим выходом будет балансирование на грани, между сильной и слабой типизацией. Но пока идеальный баланс не держит ни один язык, поэтому я больше склоняюсь к сильно типизированным языкам (таким как Haskell, Java, C#, Python), а не к слабо типизированным (таким как C, JavaScript, Lua, PHP).

Явная и неявная типизации

Язык с явной типизацией предполагает, что программист должен указывать типы всех переменных и функций, которые объявляет. Английский термин для этого - explicit typing.

Язык с неявной типизацией, напротив, предлагает Вам забыть о типах и переложить задачу вывода типов на компилятор или интерпретатор. Английски термин для этого - implicit typing.

По-началу можно решить, что неявная типизация равносильна динамической, а явная - статической, но дальше мы увидим, что это не так.

Есть ли плюсы у каждого вида, и опять же, есть ли их комбинации и есть ли языки с поддержкой обоих методов?

Преимущества явной типизации
  • Наличие у каждой функции сигнатуры (например int add(int, int)) позволяет без проблем определить, что функция делает.
  • Программист сразу записывает, какого типа значения могут храниться в конкретной переменной, что снимает необходимость запоминать это.
Преимущества неявной типизации
  • Сокращение записи - def add(x, y) явно короче, чем int add(int x, int y) .
  • Устойчивость к изменениям. Например если в функции временная переменная была того-же типа, что и входной аргумент, то в явно типизированном языке при изменении типа входного аргумента нужно будет изменить еще и тип временной переменной.
Хорошо, видно, что оба подхода имеют как плюсы так и минусы (а кто ожидал чего-го еще?), так давайте поищем способы комбинирования этих двух подходов!
Явная типизация по-выбору
Есть языки, с неявной типизацией по-умолчанию и возможностью указать тип значений при необходимости. Настоящий тип выражения транслятор выведет автоматически. Один из таких языков - Haskell, давайте я приведу простой пример, для наглядности:
-- Без явного указания типа add (x, y) = x + y -- Явное указание типа add:: (Integer, Integer) -> Integer add (x, y) = x + y

Примечание: я намерено использовал некаррированную функцию, а также намерено записал частную сигнатуру вместо более общей add:: (Num a) => a -> a -> a *, т.к. хотел показать идею, без объяснения синтаксиса Haskell"а.

Обязательные условия

Строгая типизация подразумевает выполнение следующих обязательных условий:

  1. Любой объект данных (переменная, константа, выражение) в языке всегда имеет строго определённый тип , который фиксируется на момент компиляции программы (статическая типизация) или определяется во время выполнения (динамическая типизация).
  2. Допускается присваивание переменной только значения, имеющего строго тот же тип данных, что и переменная, те же ограничения действуют в отношении передачи параметров и возврата результатов функций.
  3. Каждая операция требует параметров строго определённых типов.
  4. Неявное преобразование типов не допускается (то есть транслятор воспринимает любую попытку использовать значение не того типа, который был описан для переменной, параметра, функции или операции, как синтаксическую ошибку).

При точном следовании требованиям строгой типизации даже одинаковые по составу значений и допустимым операциям типы данных являются несовместимыми. Если в программе необходимо присвоить значение одного типа данных переменной другого типа, это можно сделать, но только путём явного применения специальной операции преобразования типа, которая в таких случаях обычно является частью языка программирования (хотя может формально и не являться ею, а предоставляться стандартными библиотеками).

Типизация в языках программирования

Ссылки

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Строгая типизация" в других словарях:

    Тип данных фундаментальное понятие теории программирования. Тип данных определяет множество значений, набор операций, которые можно применять к таким значениям, и, возможно, способ реализации хранения значений и выполнения операций. Любые… … Википедия

    Типизация данных Типобезопасность Вывод типов Динамическая типизация Статическая типизация Строгая типизация Мягкая типизация Зависимые типы Утиная типизация Основная статья: Строгая типизация Динамическая типизация приём, широко… … Википедия

    Типизация данных Типобезопасность Вывод типов Динамическая типизация Статическая типизация Строгая типизация Мягкая типизация Зависимые типы Утиная типизация Основная статья: Строгая типизация Статическая типизация приём, широко… … Википедия

    Динамическая типизация приём, широко используемый в языках программирования и языках спецификации, при котором переменная связывается с типом в момент присваивания значения, а не в момент объявления переменной. Таким образом, в различных участках … Википедия

    Типизация данных Типобезопасность Вывод типов Динамическая типизация Статическая типизация Строгая типизация Мягкая типизация Зависимые типы Утиная типизация Вывод типа (англ. Type inference) в программировании возможность компилятора… … Википедия

    Типизация данных Типобезопасность Вывод типов Динамическая типизация Статическая типизация Строгая типизация Мягкая типизация Зависимые типы Утиная типизация Зависимый тип, в информатике и логике тип, который зависит от значения. Зависимые… … Википедия

    - (встречается также термин вид данных) фундаментальное понятие теории программирования. Тип данных определяет множество значений, набор операций, которые можно применять к таким значениям и, возможно, способ реализации хранения значений и… … Википедия

    Тип данных Содержание 1 История 2 Определение 3 Необходимость использования типов данных … Википедия

    У этого термина существуют и другие значения, см. ML (значения). ML Семантика: мультипарадигменный: функциональный, императивный, модульный Появился в: 1973 Автор(ы): Робин Милнер и др. Эдинбургский университет … Википедия

Когда вы изучаете языки программирования, то в разговорах часто слышите фразы наподобие “статически типизированный” или “динамически типизированный”. Эти понятия описывают процесс проверки соответствия типов, и как статическая проверка типов, так и динамическая, относятся к разным системам типов. Система типов - это набор правил, которые присваивают свойство, называющееся “тип”, различным сущностям в программе: переменным, выражениям, функциям или модулями - с конечной целью уменьшения количества ошибок путём подтверждения того, что данные отображаются корректно.

Не волнуйтесь, я знаю, что это всё звучит запутанно, поэтому мы начнём с основ. Что такое “проверка соответствия типов” и что такое вообще тип?

Тип

Код, прошедший динамическую проверку типов, в общем случае менее оптимизирован; кроме того, существует возможность ошибок выполнения и, как следствие, необходимость проверки перед каждым запуском. Тем не менее, динамическая типизация открывает дорогу другим, мощным техникам программирования, например, метапрограммированию .

Типичные заблуждения

Миф 1: статическая / динамическая типизация == сильная / слабая типизация

Обычным заблуждение является мнение, что все статически типизированные языки являются сильно типизированными, а динамически типизированные - слабо типизированными. Это неверно, и вот почему.

Сильно типизированный язык - это такой язык, в котором переменные привязаны к конкретным типам данных, и который выдаст ошибку типизации в случае несовпадения ожидаемого и фактического типов - когда бы не проводилась проверка. Проще всего представить сильно типизированный язык как язык с высокой типобезопасностью. Например, в уже использованном выше куске кода сильно типизированный язык выдаст явную ошибку типизации, которая прервёт выполнение программы:

X = 1 + "2"

Мы часто ассоциируем статически типизированные языки, такие как Java и C#, с сильно типизированным (они такими и являются), поскольку тип данных задаётся явно при инициализации переменной - как в этом примере на Java:

String foo = new String("hello world");

Тем не менее, Ruby, Python и JavaScript (все они обладaют динамической типизацией) также являются сильно типизированными, хотя разработчику и не нужно указывать тип переменной при объявлении. Рассмотрим такой же пример, но написанный на Ruby:

Foo = "hello world"

Оба языка являются сильно типизированными, но используют разные методы проверки типов. Такие языки, как Ruby, Python и JavaScript не требуют явного определения типов из-за вывода типов - способности программно выводить нужный тип переменной в зависимости от её значения. Вывод типов - это отдельное свойство языка, и не относится к системам типов.

Слабо типизированный язык - это язык, в котором переменные не привязаны к конкретному типу данных; у них всё ещё есть тип, но ограничения типобезопасности гораздо слабее. Рассмотрим следующий пример кода на PHP:

$foo = "x"; $foo = $foo + 2; // not an error echo $foo; // 2

Поскольку PHP обладает слабой типизацией, ошибки в этом коде нет. Аналогично предыдущему предположению, не все слабо типизированные языки являются динамически типизированными: PHP - это динамически типизированный язык, но вот C - тоже язык со слабой типизацией - воистину статически типизирован.

Миф разрушен.

Хотя статическая / динамическая и сильная / слабая системы типов и являются разными, они обе связаны с типобезопасностью. Проще всего это выразить так: первая система говорит о том, когда проверяется типобезопасность, а вторая - как.

Миф 2: статическая / динамическая типизация == компилируемые / интерпретируемые языки

Будет верным сказать, что большинство статически типизированных языков обычно компилируются, а динамически типизированных - интерпретируются, но обобщить это утверждение нельзя, и тому есть простой пример.

Когда мы говорим о типизации языка, мы говорим о языке как о целом. Например, неважно, какую версию Java вы используете - она всегда будет статически типизированной. Это отличается от того случая, когда язык является компилируемым или интерпретируемым, поскольку в этом случае мы говорим о конкретной реализации языка. В теории, любой язык может быть как компилируемым, так и интерпретируемым. Самая популярная реализация языка Java использует компиляцию в байткод, который интерпретирует JVM - но есть и иные реализации этого языка, которые компилируются напрямую в машинный код или интерпретируются как есть.

Если это всё ещё непонятно, советую прочесть этого цикла.

Заключение

Я знаю, что в этой статье было много информации - но я верю, что вы справились. Я бы хотел вынести информацию про сильную / слабую типизацию в отдельную статью, но это не такая важная тема; к тому же, нужно было показать, что этот вид типизации не имеет отношения к проверке типов.

Нет однозначного ответа на вопрос “какая типизация лучше?” - у каждой есть свои преимущества и недостатки. Некоторые языки - такие как Perl и C# - даже позволяют вам самостоятельно выбирать между статической и динамической системами проверки типов. Понимание этих систем позволит вам лучше понять природу возникающих ошибок, а также упростит борьбу с ними.